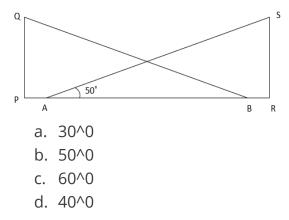
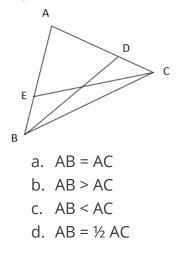
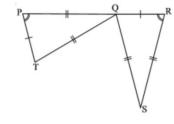

STANDARD 8TH: CHAPTER 13 Congruence Of Triangle

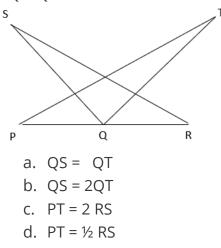
Q.1. Choose the correct alternative:


- 1. Given that $\angle A = \angle P$ and AC = PR. Then, which of the following conditions are true for \triangle PQR and \triangle ABC to be congruent.
 - a. BC = QR by ASS criteria
 - b. BC = QR by SSA criteria
 - c. AB = PQ by SAS criteria
 - d. AB = PQ by SSA criteria
- 2. Which of the following relation is correct if PQ = PS, PR = PT and \angle QPS = \angle TPR?

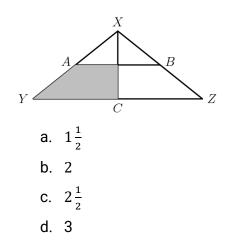

3. What is the length of TS if PT = 6 cm and PQ || RS and T is the midpoint of QR?


4. What is the value of $\angle PQB$ if PQ $\perp PB$ and RS $\perp AR$ and RS = PQ, AP = BR?

5. Which of the following relation is correct if the altitudes BD and CE are equal?

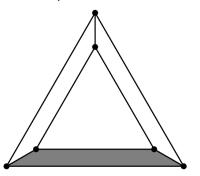


- 6. If $\triangle ABC \cong \triangle PQR$, then which of the following is not true?
 - a. BC=PQ
 - b. AC=PR
 - c. QR=BC
 - d. AB=PQ
- 7. Complete the congruence statement: Δ QRS \cong ?

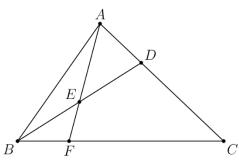


- a. ΔTPQ
- b. ΔTQP
- c. ΔQTP
- d. ΔQPT

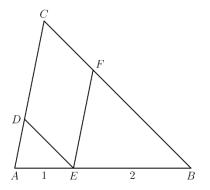
- 8. Two figures are said to be congruent if they have exactly the same:
 - a. length and width
 - b. shape and size
 - c. area
 - d. Perimeter
- 9. Which of the following option is correct if $\angle PQS = \angle TQR$, $\angle SRP = \angle TPR$ and PQ = QR?



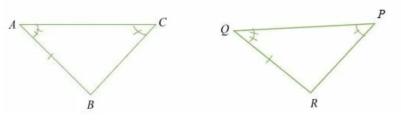
10. The area of triangle XYZ is 8 square inches. Points A and B are midpoints of congruent segments \overline{XY} and \overline{XZ} . Altitude \overline{XC} bisects \overline{YZ} . The area (in square inches) of the shaded region is



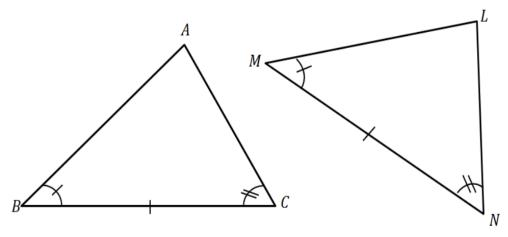
Q.2. Solve the following


1. An equilateral triangle is placed inside a larger equilateral triangle so that the region between them can be divided into three congruent trapezoids, as shown below. The side length of the inner triangle is $\frac{2}{3}$ the side length of the larger triangle. What is the ratio of the area of one trapezoid to the area of the inner triangle?

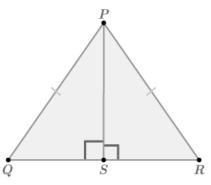
2. In triangle $\triangle ABC$, point D divides side \overline{AC} so that AD : DC = 1 : 2. Let E be the midpoint of \overline{BD} and let F be the point of intersection of line \overline{BC} and line \overline{AE} . Given that the area of $\triangle ABC$ is 360, what is the area of $\triangle EBF$?



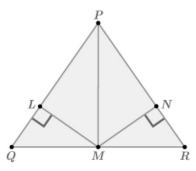
3. In $\triangle ABC$ a point *E* is on <u>AB</u> with AE = 1 and EB = 2. Point *D* is on <u>AC</u> so that <u>DE</u> \parallel <u>BC</u> and point F is on <u>BC</u> so that <u>EF</u> \parallel <u>AC</u> What is the ratio of the area of *CDEF* to the area of $\triangle ABC$?

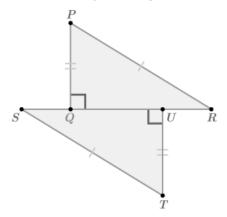


4. State and prove side-angle side test.


5. Given that $\angle ABC = (2x + 30)^\circ$, $\angle PQR = 55^\circ$ and $\angle RPQ = 65^\circ$, find the value of x.

6. For the triangles shown below, $\angle ABC = 36^{\circ}$ and $\angle LMN = (2x - 4)^{\circ}$. If $\angle ACB = (4x - 15)^{\circ}$, what is the measure of $\angle LNM$?


- 7. In the given figure, PQ = PR, $\angle QSP = \angle RSP = 90^{\circ}$. Prove that
 - a. $\triangle PSQ \cong \triangle PSR$
 - b. $\angle Q = \angle R$
 - c. QS = RS


8. In $\triangle ABC$, the bisector of $\angle A$ intersect <u>BC</u> at point D. Then prove that

 $BD \times AC = DC \times AB$

9. In the given figure, LM = NM, $ML \perp PQ$ and $MN \perp PR$. Prove that $\angle LPM = \angle NPM$.

10. In the given figure, $\triangle TUS$ and $\triangle PQR$ are right angled at *U* and *Q* respectively. Prove that $\triangle PQR \cong \triangle TUS$.

