

STANDARD 7TH: CHAPTER 6

Indices

Q.1 Select all correct options

- 1. What is the solution of $\sqrt{18} + \sqrt{50} \sqrt{98}$
 - a) $\sqrt{2}$ b) $\frac{4}{\sqrt{8}}$

 - c) $\sqrt{8}$
 - d) 4
- 2. Find k if $k(x + y)^2 + x^2 + y^2$ is perfect square for all values of x and y.
 - a) 2
 - b) -81/162 C) $\frac{1}{2}$
 - d) $-\frac{1}{2}$
- 3. Which of the following is greatest? a) $\sqrt{2}$
 - b)³√2 c)⁴√2
 - d)⁵√2
- 4. $\sqrt{5 + \sqrt[3]{x}} = 3$ a)∛64 b) 64 c)√4096 d)³√262144
- 5. Simplify $\sqrt{2} \times \sqrt[3]{3} \times \sqrt[4]{4}$ a)14√3 b) 2³√3 c) 1 d)³√24

- 6. Arrange $\sqrt[3]{6}$, $\sqrt[4]{9}$ and $\sqrt[3]{2}$ in ascending order
 - a) $\sqrt[3]{6}$, $\sqrt[4]{9}$, $\sqrt[3]{2}$ b) $\sqrt[3]{2}$, $\sqrt[4]{9}$, $\sqrt[3]{6}$ c) $\sqrt[4]{9}$, $\sqrt[3]{6}$, $\sqrt[3]{2}$
 - d) $\sqrt[3]{6}$, $\sqrt[3]{2}$, $\sqrt[4]{9}$
- 7. Write $2x^{-\frac{1}{4}}$ using a positive index

a)
$$2x^{\frac{1}{4}}$$

b) $\frac{2}{x^{\frac{1}{4}}}$
c) $\frac{2}{x^{\frac{2}{4}}} \times$

C)
$$\frac{\frac{2}{x^{\frac{3}{4}}} \times \frac{1}{x^{-\frac{2}{4}}}}{\frac{4}{2x^{\frac{16}{64}}}}$$

- 8. Solve: $\sqrt{\frac{0.81 \times 0.484}{0.0064 \times 6.25}}$ a) 0.9 b) 9
 - c) 0.99
 - d) 99
- 9. Simplify: $[(6^{-1} 8^{-1})^{-1} + (2^{-1} 3^{-1})^{-1}]^{-1}$
 - a) 30
 - b) 5/24
 - c) 1/30
 - d) $\sqrt{\frac{1}{900}}$

10. Find the value of k if $(\sqrt{2})^{5} \div (\sqrt{2})^{-4} = 2^{k+\frac{1}{2}}$

- a) ¼
- b) -4
- C) $\frac{-1}{4}$
- d) 4

Q.2 Solve the following

- 1. Solve: $100^{\frac{5}{2}} \div 100^{-\frac{1}{2}}$.
- 2. Simplify: $\frac{\sqrt{0.64} + \sqrt{1.69}}{\sqrt{3.24} \sqrt{2.25}}$
- 3. If x and y are positive integers such that x + y=1 then what can be the maximum value of $x^4y + y^4x$
- 4. What is the smallest number by which 20577 should be divided so that the quotient will be perfect square? Find cube root of the quotient.

5. Evaluate:
$$\sqrt[3]{-16} \times \sqrt[3]{363} \times \sqrt[3]{\frac{1}{2662}} \times \sqrt[3]{99}$$

- 6. Two numbers are in the ratio 5:6. The sum of their cube is 21824. Find the numbers.
- 7. Express 0.0006542 in standard form.
- 8. Express the number of seconds of 5 years in the standard form.
- 9. Find the value of $\frac{x}{y}$ if $x = 4.9 \times 10^{-5}$ & $y = 7 \times 10^{-8}$
- 10. By what number should $\left(\frac{1}{2}\right)^{-1}$ should be multiplied so that the product is $\left(\frac{-5}{4}\right)^{-1}$.